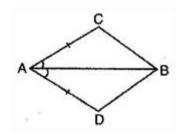
Updated On 11-02-2025 By Lithanya

Chapter 7 - Triangles | NCERT Solutions for Class 9 Maths

Ex 7.1 Question 1.

In quadrilateral ABCD (See figure). AC=AD and AB bisects $\angle A$. Show that $\triangle ABC\cong\triangle ABD$. What can you say about BC and BD?



Answer.

Given: In quadrilateral ABCD, AC = AD and AB bisects $\angle A$.

To prove: $\triangle ABC \cong \triangle ABD$

Proof: In $\triangle ABC$ and $\triangle ABD$,

AC = AD[Given]

 $\angle BAC = \angle BAD[\because AB \text{ bisects } \angle A]$

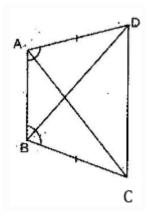
AB = AB[Common]

 $\therefore \triangle ABC \cong \triangle ABD$ [By SAS congruency]

Thus BC = BD [By C.P.C.T.]

Ex 7.1 Question 2.

ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. (See figure). Prove that:



(i) \triangle ABD \cong $\triangle BAC$

(ii) BD = AC

(iii) $\angle ABD = \angle BAC$

Answer.

(i) In $\triangle ABC$ and $\triangle ABD$,

BC = AD[Given]

 $\angle DAB = \angle CBA[$ Given]

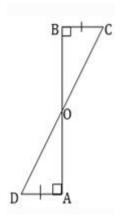
 $AB = AB[\ \hbox{Common}]$

 $\therefore \triangle ABC \cong \triangle ABD$ [By SAS congruency]

Thus AC = BD [By C.P.C.T.] (ii) Since $\triangle ABC \cong \triangle ABD$ $\therefore AC = BD[By$ C.P.C.T.] (iii) Since $\triangle ABC \cong \triangle ABD$ $\therefore \angle ABD = \angle BAC$ [By C.P.C.T.]

Ex 7.1 Question 3.

AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB (See figure)

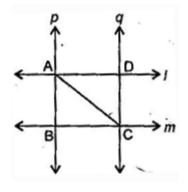


Answer.

In $\triangle BOC$ and $\triangle AOD$, $\angle OBC = \angle OAD = 90^\circ$ [Given] $\angle BOC = \angle AOD$ [Vertically Opposite angles] BC = AD[Given] $\therefore \triangle BOC \cong \triangle AOD$ [By ASA congruency] $\Rightarrow OB = OA$ and OC = OD[By C.P.C.T.]

Ex 7.1 Question 4.

l and m are two parallel lines intersected by another pair of parallel lines p and q (See figure). Show that $\triangle ABC \cong \triangle CDA$.



Answer.

AC being a transversal. [Given]

Therefore $\angle DAC = \angle ACB$ [Alternate angles]

Now $p\|q$ [Given]

And AC being a transversal. [Given]

Therefore $\angle BAC = \angle ACD$ [Alternate angles]

Now in $\triangle ABC$ and $\triangle ADC$,

 $\angle ACB = \angle DAC$ [Proved above]

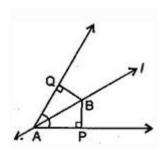
 $\angle BAC = \angle ACD$ [Proved above]

AC = AC[Common]

 $\therefore \triangle ABC \cong \triangle CDA$ [By ASA congruency]

Ex 7.1 Question 5.

Line l is the bisector of the angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$. Show that:



(i) $\triangle APB \cong \triangle AQB$

(ii) BP=BQ or P is equidistant from the arms of $\angle A$ (See figure).

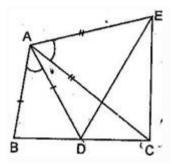
Answer.

Given: Line l bisects $\angle A$. $\therefore \angle BAP = \angle BAQ$ (i) In $\triangle ABP$ and $\triangle ABQ$, $\angle BAP = \angle BAQ$ [Given] $\angle BPA = \angle BQA = 90^\circ$ [Given] AB = AB [Common] $\therefore \triangle APB \cong \triangle AQB$ [By ASA congruency]

(ii) Since $\triangle APB \cong \triangle AQB$ $\therefore BP = BQ[By \text{ C.P.C.T. }]$ $\Rightarrow B$ is equidistant from the arms of $\angle A$.

Ex 7.1 Question 6.

In figure, AC = AB, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE. \land



Answer.

Given that $\angle BAD = \angle EAC$

Adding \angle DAC on both sides, we get $\angle BAD + \angle DAC = \angle EAC + \angle DAC$ $\Rightarrow \angle BAC = \angle EAD \dots$ (i)

Now in $\triangle ABC$ and $\triangle AED$,

 $AB = AD[\ \mbox{Given}\]$

 $\mathrm{AC} = \mathrm{AE}[$ Given]

 $\angle BAC = \angle DAE$ [From eq. (i)]

 $\therefore \triangle ABC \cong \triangle ADE$ [By SAS congruency]

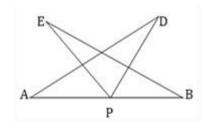
 $\Rightarrow \mathrm{BC} = \mathrm{DE}[\mathrm{By} \ \mathrm{C.P.C.T.}]$

Ex 7.1 Question 7.

AB is a line segment and P is the mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that:

(i) \triangle DAF \cong $\triangle FBP$

(ii) AD=BE (See figure)



Answer.

Given that $\angle EPA = \angle DPB$

Adding \angle EPD on both sides, we get \angle EPA + \angle EPD = \angle DPB + \angle EPD \Rightarrow \angle APD = \angle BPE......(i)

Now in $\triangle ext{APD}$ and $\triangle ext{BPE}$,

 $\angle PAD = \angle PBE[\because \angle BAD = \angle ABE \text{ (given)},$

 $\therefore \angle PAD = \angle PBE$

AP = PB[P is the mid-point of AB]

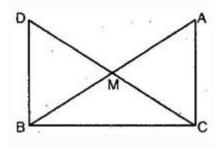
 $\angle APD = \angle BPE [From eq. (i)]$

 $\therefore \triangle DPA \cong \triangle EBP[By ASA congruency]$

 \Rightarrow AD = BE [By C.P.C.T.]

Ex 7.1 Question 8.

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. (See figure)



Show that:

- (i) \triangle AMC \cong \triangle BMD
- (ii) $\angle DBC$ is a right angle.
- (iii) $\triangle DBC \cong \triangle ACB$
- (iv) $CM = \frac{1}{2}AB$

Answer.

- (i) In $\triangle AMC$ and $\triangle BMD$,
- AM = BM[AB is the mid-point of AB]
- $\angle AMC = \angle BMD$ [Vertically opposite angles]
- $\mathrm{CM} = \mathrm{DM}[$ Given]
- $\therefore \triangle AMC \cong \triangle BMD$ [By SAS congruency]
- $\therefore \angle ACM = \angle BDM$
- $\angle {\rm CAM} = \angle {\rm DBM}$ and ${\rm AC} = {\rm BD}$ [By C.P.C.T.]
- (ii) For two lines AC and DB and transversal DC, we have,
- $\angle ACD = \angle BDC$ [Alternate angles]
- $\therefore AC||DB|$
- Now for parallel lines AC and DB and for transversal BC.
- $\angle DBC = \angle ACB$ [Alternate angles]
- But $\triangle ABC$ is a right angled triangle, right angled at C.
- $\therefore \angle ACB = 90^{\circ}$
- Therefore $\angle DBC = 90^{\circ}$ [Using eq. (ii) and (iii)]
- $\Rightarrow \angle DBC$ is a right angle.
- (iii) Now in $\triangle DBC$ and $\triangle ABC$,
- DB = AC[Proved in part (i)]
- $\angle DBC = \angle ACB = 90^{\circ}$ [Proved in part (ii)]
- $\mathrm{BC}=\mathrm{BC}[$ Common]
- $\therefore \triangle DBC \cong \triangle ACB$ [By SAS congruency]
- (iv) Since $\triangle DBC \cong \triangle ACB$ [Proved above]
- \therefore DC = AB
- $\Rightarrow AM + CM = AB$
- $\Rightarrow CM+CM=AB[\because DM=CM]$
- $\Rightarrow 2CM = AB$
- $\Rightarrow CM = \frac{1}{2}AB$

Chapter 7 - Triangles | NCERT Solutions for Class 9 Maths

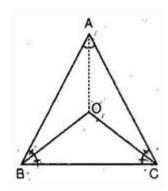
Ex 7.2 Question 1.

In an isosceles triangle **ABC**, with **AB** = **AC**, the bisectors of \angle **B** and \angle **C** intersect each other at O. Join A to O. Show that:

- (i) OB = OC
- (ii) AO bisects $\angle A$.

Answer.

(i) ABC is an isosceles triangle in which AB = AC.



- $\therefore \angle C = \angle B$ [Angles opposite to equal sides]
- $\Rightarrow \angle OCA + \angle OCB = \angle OBA + \angle OBC$
- $:: OB \text{ bisects } \angle B \text{ and } OC \text{ bisects } \angle C$
- $\therefore \angle OBA = \angle OBC$ and $\angle OCA = \angle OCB$
- $\Rightarrow \angle OCB + \angle OCB = \angle OBC + \angle OBC$
- $\Rightarrow 2 \angle OCB = 2 \angle OBC$
- $\Rightarrow \angle OCB = \angle OBC$

Now in $\triangle OBC$,

 $\angle OCB = \angle OBC$ [Prove above]

 \therefore OB = OC [Sides opposite to equal sides]

(ii) In $\triangle AOB$ and $\triangle AOC$,

AB = AC[Given]

 $\angle OBA = \angle OCA$ [Given]

And $\angle B = \angle C$

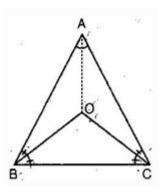
$$\Rightarrow \frac{1}{2} \angle B = \frac{1}{2} \angle C$$

- $\Rightarrow \angle OBA = \angle OCA$
- \Rightarrow OB = OC [Prove above]
- $\therefore \triangle AOB \cong \triangle AOC$ [By SAS congruency]
- $\Rightarrow \angle OAB = \angle OAC [By C.P.C.T.]$

Hence AO bisects $\angle A$.

Ex 7.2 Question 2.

In $\triangle ABC, AD$ is the perpendicular bisector of BC (See figure). Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.



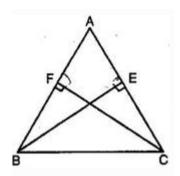
Answer.

In $\triangle AOB$ and $\triangle AOC$, BD = CD[AD bisects BC] $\angle ADB = \angle ADC = 90^{\circ}[AD \perp BC]$ AD = AD[Common] $\therefore \triangle ABD \cong \triangle ACD$ [By SAS congruency] $\Rightarrow AB = AC$ [By C.P.C.T.]

Therefore, ABC is an isosceles triangle.

Ex 7.2 Question 3.

ABC is an isosceles triangle in which altitudes BE and CF are drawn to sides AC and AB respectively (See figure). Show that these altitudes are equal.



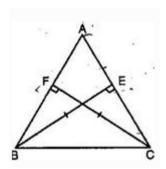
Answer.

In $\triangle ABE$ and $\triangle ACF$, $\angle A = \angle A \text{ [Common]}$ $\angle AEB = \angle AFC = 90^{\circ} \text{ [Given]}$ AB = AC [Given] $\therefore \triangle ABE \cong \triangle ACF \text{ [By ASA congruency]}$ $\Rightarrow BE = CF \text{ [By C.P.C.T.]}$ $\Rightarrow \text{ Altitudes are equal.}$

Ex 7.2 Question 4.

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (See figure). Show that: (i) $\triangle ABE \cong \triangle ACF$

(ii) AB = AC or $\triangle ABC$ is an isosceles triangle.

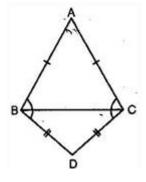


Answer

(i) In $\triangle ABE$ and $\triangle ACF$, $\angle A = \angle A$ [Common] $\angle AEB = \angle AFC = 90^{\circ}$ [Given] BE = CF [Given] $\therefore \triangle ABE \cong \triangle ACF$ [By ASA congruency] (ii) Since $\triangle ABE \cong \triangle ACF$ $\Rightarrow BE = CF$ [By C.P.C.T.] $\Rightarrow ABC$ is an isosceles triangle.

Ex 7.2 Question 5.

ABC and DBC are two isosceles triangles on the same base BC (See figure). Show that \angle $\mathbf{ABD} = \angle$ ACD



Answer.

In isosceles triangle ABC,

AB = AC[Given]

 $\angle ACB = \angle ABC$

(i) [Angles opposite to equal sides]

Also in Isosceles triangle BCD.

BD = DC

 $\therefore \angle BCD = \angle CBD$

(ii) [Angles opposite to equal sides]

Adding eq. (i) and (ii),

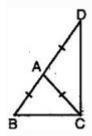
 $\angle ACB + \angle BCD = \angle ABC + \angle CBD$

 $\Rightarrow \angle ACD = \angle ABD$

or $\angle ABD = \angle ACD$

Ex 7.2 Question 6.

 $\triangle ABC$ is an isosceles triangle in which AB=AC. Side BA is produced to D such that AD=AB. Show that $\angle BCD$ is a right angle (See figure).



Answer.

In isosceles triangle ABC,

AB = AC[Given]

 $\angle ACB = \angle ABC$

.(i) [Angles opposite to equal sides]

Now AD=AB[By construction]

But AB = AC[Given]

$$\therefore AD = AB = AC$$

$$\Rightarrow \mathrm{AD} = \mathrm{AC}$$

Now in triangle ADC,

AD = AC

 $\Rightarrow \angle ADC = \angle ACD$

(ii) [Angles opposite to equal sides]

Since $\angle BAC + \angle CAD = 180^\circ$

(iii) [Linear pair]

And Exterior angle of a triangle is equal to the sum of its interior opposite angles.

 \therefore In $\triangle ABC$,

 $\angle CAD = \angle ABC + \angle ACB = \angle ACB + \angle ACB$ [Using (i)]

 $\Rightarrow \angle CAD = 2\angle ACB$

Similarly, for $\triangle ADC$,

$$\angle BAC = \angle ACD + \angle ADC$$

$$= \angle ACD + \angle ACD = 2\angle ACD$$

From eq. (iii), (iv) and (v),

$$2\angle ACB + 2\angle ACD = 180^{\circ}$$

$$\Rightarrow 2(\angle ACB + \angle ACD) = 180^{\circ}$$

$$\Rightarrow \angle ACB + \angle ACD = 90^{\circ}$$

$$\Rightarrow \angle BCD = 90^\circ$$

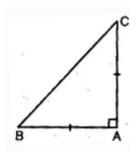
Hence $\angle BCD$ is a right angle.

Ex 7.2 Question 7.

 \mathbf{ABC} is a right angled triangle in which $\angle \mathbf{A} = 90^\circ$ and $\mathbf{AB} = \mathbf{AC}$. Find $\angle \mathbf{B}$ and $\angle \mathbf{C}$.

Answer.

ABC is a right triangle in which,



$$\angle A = 90^{\circ} \text{ And AB} = AC$$

$$\operatorname{In} \triangle ABC$$

$$AB = AC$$

$$\Rightarrow \angle C = \angle B \dots (i)$$

We know that, in $\triangle ABC$,

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 [Angle sum property]

$$\Rightarrow 90^{\circ} + \angle B + \angle B = 180^{\circ}$$

$$[\angle A=90^\circ$$
 (given) and $\angle B=\angle C$ (from eq. (i)]

$$\Rightarrow 2\angle B = 90^{\circ}$$

$$\Rightarrow \angle B = 45^{\circ}$$

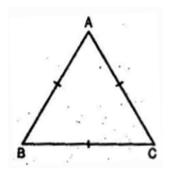
Also
$$\angle C = 45^\circ [\angle B = \angle C]$$

Ex 7.2 Question 8.

Show that the angles of an equilateral triangle are 60° each.

Answer.

Let ABC be an equilateral triangle.



$$AB = BC = AC$$

$$\Rightarrow AB = BC$$

$$\Rightarrow \angle C = \angle A \dots$$

Similarly,
$$AB=AC$$

$$\Rightarrow \angle C = \angle B$$

From eq. (i) and (ii),

$$\angle A = \angle B = \angle C$$

Now in $\triangle ABC$

$$\angle A + \angle B + \angle C = 180^{\circ} \dots (iv)$$

$$\Rightarrow \angle A + \angle A + \angle A = 180^\circ$$

$$\Rightarrow 3\angle A = 180^\circ$$

$$\Rightarrow \angle A = 60^{\circ}$$

Since
$$\angle A = \angle B = \angle C[$$
 From eq. (iii) $]$

$$\therefore \angle A = \angle B = \angle C = 60^{\circ}$$

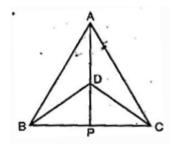
Since
$$\angle A = \angle B = \angle C$$
 [From eq. (iii)]

Hence each angle of equilateral triangle is 60° .

Chapter 7 - Triangles | NCERT Solutions for Class 9 Maths

Ex 7.3 Question 1.

 $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (See figure). If AD is extended to intersect BC at P, show that:



- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle \mathbf{ABP} \cong \triangle \mathbf{ACP}$
- (iii) AP bisects $\angle \mathbf{A}$ as well as $\angle \mathbf{D}$.
- (iv) AP is the perpendicular bisector of BC.

Answer.

- (i) $\triangle ABC$ is an isosceles triangle.
- $\therefore AB = AC$

 $\triangle DBC$ is an isosceles triangle.

 $\therefore BD = CD$

Now in $\triangle ABD$ and $\triangle ACD$,

AB = AC[Given]

BD = CD[Given]

AD = AD[Common]

- $\therefore \Delta ABD \cong \triangle ACD$ [By SSS congruency]
- $\Rightarrow \angle BAD = \angle CAD$ [By C.P.C.T.]
- (ii) Now in $\triangle ABP$ and $\triangle ACP$,

AB = AC[Given]

 $\angle BAD = \angle CAD[$ From eq. (i)]

AP = AP

- $\therefore \Delta ABP \cong \triangle ACP$ [By SAS congruency]
- (iii) Since $\triangle ABP \cong \triangle ACP$ [From part (ii)]
- $\Rightarrow \angle BAP = \angle CAP[By C.P.C.T.]$
- \Rightarrow AP bisects $\angle A$.

Since $\triangle ABD \cong \triangle ACD[$ From part (i)]

 $\Rightarrow \angle ADB = \angle ADC$ [By C.P.C.T.]

Now $\angle ADB + \angle BDP = 180^{\circ}$ [Linear pair]

And $\angle ADC + \angle CDP = 180^{\circ}$ [Linear pair]

From eq. (iii) and (iv),

 $\angle ADB + \angle BDP = \angle ADC + \angle CDP$

 $\Rightarrow \angle ADB + \angle BDP = \angle ADB + \angle CDP[Using (ii)]$

 $\Rightarrow \angle BDP = \angle CDP$

 \Rightarrow DP bisects $\angle D$ or AP bisects $\angle D$.

(iv) Since $\triangle ABP \cong \triangle ACP[$ From part (ii)]

 $\therefore BP = PC[By \text{ C.P.C.T.}]$

And $\angle APB = \angle APC[By \text{ C.P.C.T. }]$ (vi)

Now $\angle APB + \angle APC = 180^{\circ}$ [Linear pair]

 $\Rightarrow \angle APB + \angle APC = 180^{\circ} [Using eq. (vi)]$

 $\Rightarrow 2\angle APB = 180^{\circ}$

 $\Rightarrow \angle APB = 90^{\circ}$

 \Rightarrow AP \perp BC

From eq. (v), we have BP PC and from (vii), we have proved AP \perp . So, collectively AP is perpendicular bisector of BC.

Ex 7.3 Question 2.

AD is an altitude of an isosceles triangle ABC in which AB=AC. Show that:

(i) AD bisects BC.

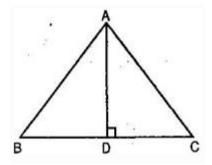
(ii) AD bisects $\angle A$.

Answer.

In $\triangle ABD$ and $\triangle ACD$,

AB = AC[Given]

 $\angle ADB = \angle ADC = 90^{\circ} [AD \perp BC]$



 $\mathrm{AD} = \mathrm{AD}$ [Common]

 $\therefore \triangle ABD \cong \triangle ACD[RHS \text{ rule of congruency}]$

 $\Rightarrow BD = DC$ [By C.P.C.T.]

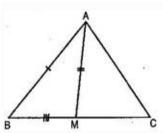
 $\Rightarrow AD$ bisects BC

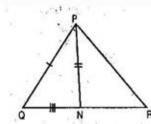
Also $\angle \mathrm{BAD} = \angle \mathrm{CAD}$ [By C.P.C.T.]

 \Rightarrow AD bisects $\angle A$.

Ex 7.3 Question 3.

Two sides AB and BC and median AM of the triangle ABC are respectively equal to side PQ and QR and median PN of \triangle PQR (See figure). Show that:





(i) \triangle ABM \cong \triangle PQN

(ii) $\triangle ABC \cong \triangle PQR$

Answer.

AM is the median of $\triangle ABC$.

$$\therefore BM = MC = \frac{1}{2}BC$$

PN is the median of $\triangle PQR$.

Now BC = QR [Given] $\Rightarrow \frac{1}{2}BC = \frac{1}{2}QR$

 $\therefore BM = QN$

(i) Now in $\triangle ABM$ and $\triangle PQN$,

AB = PQ[Given]

 $\mathrm{AM} = \mathrm{PN}[$ Given]

 $\mathrm{BM}=\mathrm{QN}[$ From eq. (iii)]

 $\therefore \triangle ABM \cong \triangle PQN$ [By SSS congruency]

 $\Rightarrow \angle B = \angle Q [By C.P.C.T.]$

(ii) In $\triangle ABC$ and $\triangle PQR$,

AB = PQ [Given]

 $\angle B = \angle Q$ [Prove above]

 $BC = QR[\ \text{Given}]$

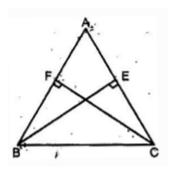
 $\therefore \triangle ABC \cong \triangle PQR$ [By SAS congruency]

Ex 7.3 Question 4.

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Answer.

In $\triangle BEC$ and $\triangle CFB$,



 $\angle \mathrm{BEC} = \angle \mathrm{CFB} \, [\, \mathrm{Each} \, \, 90^{\circ}]$

BC = BC [Common]

BE = CF [Given]

 $\therefore \Delta BEC \cong \Delta CFB [RHS congruency]$

 \Rightarrow EC = FB [By C.P.C.T.](i)

Now In $\triangle AEB$ and $\triangle AFC$

 $\angle \text{AEB} = \angle \text{AFC} [\text{ Each } 90^{\circ}]$

 $\angle A = \angle A[Common]$

BE = CF [Given]

 $\therefore \Delta AEB \cong \Delta AFC$ [ASA congruency]

 \Rightarrow AE = AF[By C.P.C.T.]

Adding eq. (i) and (ii), we get,

EC + AE = FB + AF

 $\Rightarrow AB = AC$

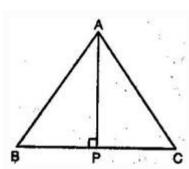
 $\Rightarrow ABC$ is an isosceles triangle.

Ex 7.3 Question 5.

ABC is an isosceles triangles with AB=AC. Draw $AP\perp BC$ and show that $\angle B=\angle C$.

Answer.

Given: ABC is an isosceles triangle in which AB = AC



To prove: $\angle B = \angle C$

Construction: Draw AP \perp BC

Proof: In $\triangle ABP$ and $\triangle ACP$

 $\angle APB = \angle APC = 90^{\circ}$ [By construction]

AB = AC [Given]

AP = AP [Common]

 $\therefore \triangle ABP \cong \triangle ACP [RHS congruency]$

 $\Rightarrow \angle B = \angle C$ [By C.P.C.T.]

